Physics Can Explain The Behaviour Of The South Africa World Cup Ball
Released on: July 13, 2010, 5:27 am
Author:
Gabriel Barceló
Industry:
Aerospace
The Jabulani Confirms The Dynamic Theory Of A Spanish Engineer
The World Cup Ball And Its Astonishing Effects Can Be Easily Explained Through The Theory Of Dynamic Interactions, Which Also Applies To The Flight Of The Boomerang
The official World Cup ball, the so called "Jabulani", which has been object of a
lot of criticism due to its unpredictable path, will be studied by the FIFA and
experts after the World Cup.
The "strange effects" in the behaviour of the official World Cup ball can be
easily described through the physical theory proposed by the Spaniard Gabriel
Barceló. For more than twenty years this Spanish PhD in Engineering has been
explaining the deviation of a ball, the effect of tennis or ping-pong balls or the
curved paths of golf balls through the Theory of Dynamic Interactions (TID). This
physical theory describes the behaviour of bodies exposed to acceleration through
rotation, from soccer balls to rotating heavenly bodies.
This theory enables an easy understanding of the path of the "Jabulani" and gives
the reason for its possible changes, in the same way as this theory explains the
typical flight of the boomerang or the rotation of galaxies in space.
Another Spanish engineer, Arturo Rodriguez, who cooperates with PhD Barceló on this
investigation project, was the initial observer of the effects of the "Jabulani"
and confirmed that it behaved according to the TID , based on the following
reasoning: According to official or orthodox Physics, the reason for the effects
which occur to the soccer ball (and which cause the change from rectilinear to
circular path) is of aerodynamic origin, i.e. they arise from the interaction of the
surface of a body (ball) with the environment (draughts). Usually this deviation of
the ball is, erroneously, attributed to the so called “Magnus Effect”, without
quantification and with insufficient scientific rigor.
But in fact the surface of the "Jabulani" is identical to that of any other soccer
ball (shape, size, weight, material, roughness, etc ...). What makes this ball
different from others is only the internal structure, which in this case is made up
of a layer of spherical rubber sectors instead of the homogeneous and continuous
structure of traditional balls. Therefore there is every indication that it is this
difference which causes a differentiated dynamic behaviour.
Summarizing, according to the analysis which derives from the "Magnus" effect this
internal structure of the ball is of none importance, as orthodox Physics only takes
into account the aerodynamic effects which are originated between the surface of the
ball and the environment (air).
This clear contradiction proves that the physical-mathematical model which has been
generally accepted up to date would not be correct. I have been analyzing this topic
and have come to the conclusion that this phenomenon confirms the correctness of the
Theory of Dynamic Interactions.
Already in 2005 PhD. Barceló published the book “El vuelo del Bumerán” (The flight
of the Boomerang), where he explained the TID, later reiterating his arguments in
the text “Un mundo en rotación” (A rotating World), published in 2008. In both books
he analyzes rotating bodies and repeatedly insists on looking for new solutions to
existing rotational questions related to the paths of spinning balls, as well as
other similar astrophysical phenomena, or even its possible use in astronautics.
This theory has been presented in various Physics and Mathematics Conferences and
has been published in several journals.
After so many years, this ball could be the proof of the theory, because, at it is
not homogeneous, internal torques will be originated due to the uneven effect of the
weight of each sector of the ball, so that gravity will favour the existence of
curved paths of the "Jabulani" ball. This theory could be used in the design of
spinning or non spinning balls.
The theory of Dynamic Interactions (TID) can be looked up in Internet on: http://www.advanceddynamics.net/
Contact Details: Pedro de Valdivia, 31 28006 Madrid (Spain). Phone:
34914112823. Fax 34915614107. Email (1) gestor@advanceddynamics.net (2)
AntonioVigilMunoz@gmail.com. Web www.advanceddynamics.net
Back to previous page
Home page
Submit your press release